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Abstract. Antiferromagnetic Heisenberg spin chains with various spin values (S = 1/2, 1, 3/2, 2, 5/2) are
studied numerically with the quantum Monte-Carlo method. Effective spin S chains are realized by ferro-
magnetically coupling n = 2S antiferromagnetic spin chains with S = 1/2. The temperature dependence
of the uniform susceptibility, the staggered susceptibility, and the static structure factor peak intensity
are computed down to very low temperatures, T/J ≈ 0.01. The correlation length at each temperature is
deduced from numerical measurements of the instantaneous spin-spin correlation function. At high temper-
atures, very good agreement with exact results for the classical spin chain is obtained independent of the
value of S. For the S = 2 chain which has a gap ∆, the correlation length and the uniform susceptibility in
the temperature range ∆ < T < J are well predicted by the semi-classical theory of Damle and Sachdev.

PACS. 75.10.Jm Quantized spin models – 75.40.Cx Static properties (order parameter, static
susceptibility, heat capacities, critical exponents, etc.) – 75.40.Mg Numerical simulation studies

1 Introduction

For many years, low-dimensional quantum magnets have
drawn much interest from both the theoretical and exper-
imental condensed matter physics communities. Powerful
experimental tools like neutron scattering have elucidated
the basic physics of two-dimensional (2D) antiferromag-
nets, such as K2NiF4 (S = 1) [1], and one-dimensional
(1D) systems, such as (CD3)4NMnCl3(TMMC) (S = 5/2)
[2,3]. The discovery of high-temperature superconductiv-
ity in 1986 sparked renewed interest in this field, since
the parent compounds of these superconductors provide
very good realizations of 2D spin-1/2 square-lattice quan-
tum Heisenberg antiferromagnets [4,5]. Recently, quan-
tum spin ladders and spin chains have also attracted much
attention, since new copper oxides with such structures
have become available; these systems are of intrinsic in-
terest and they also allow one to compare experimental
results with the relevant quantum field theories and nu-
merical simulations [6].

We report here a Monte-Carlo study of antiferromag-
netic spin chains as a function of spin quantum number
S and temperature T . Recent advances in computer tech-
nology as well as the development of a powerful loop clus-
ter algorithm [7] have made it possible to perform a very
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detailed study of various experimentally relevant thermo-
dynamic quantities. In this paper, we compute the S and
T dependence of the uniform susceptibility, χu(S, T ); the
spin-spin correlation length, ξ(S, T ); the staggered sus-
ceptibility, χs(S, T ); and the static structure factor at
q = π, Cπ(S, T ). There exists a large number of quasi-1D
magnetic systems, such as Sr2CuO3 (S = 1/2) [8], cop-
per benzoate (S = 1/2) [9], Ni(C2H8N2)2NO2ClO4 (S =
1) [10], Y2BaNiO5 (S = 1) [11], CsVCl3 (S = 3/2) [12],
(C10H8N2)MnCl3 (S = 2) [13], and TMMC (S = 5/2) [2].
These magnets all exhibit nearly ideal 1D behavior over
a considerable range of temperature. Therefore, our study
facilitates comparisons among experimental results, nu-
merical simulations, and theories for such materials.

The Hamiltonian for the nearest-neighbor Heisenberg
spin chain is

H = J
∑
i

Si · Si+1, (1)

where J is positive for an antiferromagnet. We use units
in which ~ = kB = gµB = 1. The study of the Hamil-
tonian (1) has a long history that dates back to the
remarkable exact solution found by Bethe in 1931 for
S = 1/2 [14]. He found the ground-state eigenfunction
for this system and showed that there is no long-range
order at T = 0. In 1962, des Cloizeaux and Pearson [15]
derived the exact dispersion relation of the lowest-lying
excited states at T = 0. Luther and Peschel [16] showed
that the spectrum is gapless without magnetic ordering in
the ground state, and that the spin correlation function
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decays algebraically with distance. Haldane [17] eventu-
ally conjectured that half-odd-integer spin chains would
behave qualitatively like a S = 1/2 chain, while for integer
spin chains the zero-temperature spin correlations would
decay exponentially with distance due to the presence of
an energy gap,∆, in the excitation spectrum. Both numer-
ical and experimental confirmation of this conjecture fol-
lowed [18,19]. The low-energy and low-temperature prop-
erties of integer spin chains are well described by the 1D
quantum O(3) nonlinear σ model without any topological
term [17]. When conformal field theory techniques were
applied to 1D quantum systems, it was shown that the in-
tegrable S = 1/2 Hamiltonian, at low energies, is equiva-
lent to the SU(2) Wess-Zumino-Novikov-Witten (WZNW)
model with a topological coupling constant k = 1 [20].
Moreover, all half-odd-integer spin-S Heisenberg models
were predicted to be equivalent to the k = 1 WZNW
model, independent of S [21,22].

In the limit of classical spins, S →∞, the Hamiltonian
equation (1) was solved exactly by Fisher in 1964 [23]. In
order to accommodate the limit S → ∞, equation (1) is
conveniently rewritten in terms of the unit vector ŝi ≡
Si/
√
S(S + 1), thus introducing the energy scale JS(S +

1) in place of J . The results for the correlation length and
the uniform susceptibility per spin are, respectively,

ξ(S →∞, T )

a
= −

1

lnu(S, T )
(2)

and

χu(S →∞, T ) =
S(S + 1)

3T

1 + u(S, T )

1− u(S, T )
, (3)

where a is the lattice constant and u(S, T ) is given by

u(S, T ) = coth

[
JS(S + 1)

T

]
−

T

JS(S + 1)
·

For the experimental system TMMC (S = 5/2), the cor-
relation lengths in the Heisenberg regime obtained from
neutron scattering could be explained very well by equa-
tion (2), without any adjustable parameters, since J had
been determined independently [2].

In Section 2, we give a brief description of our Monte-
Carlo method. Uniform susceptibility data are shown and
discussed in Section 3, while staggered quantities such
as the correlation lengths, staggered susceptibilities, and
static structure factor peak intensities are presented in
Section 4. The properties of integer spin chains in the
context of recent field theory results are discussed in Sec-
tion 5. A comparison between the results for the spin-S
chain and the n-chain S = 1/2 ladder is also made in
Section 5.

2 Quantum Monte-Carlo

We have carried out quantum Monte-Carlo simulations
on large lattices utilizing the loop cluster algorithm [7]. In

Fig. 1. The uniform susceptibility per spin is shown as a func-
tion of T/[JS(S+1)]. The dashed line is a plot of Fisher’s result
for the classical spin system, equation (3). The dot-dashed lines
are fits for S = 1 and S = 2 to equation (4). The solid lines
for S = 1/2 and S = 3/2 are the WZNW nonlinear σ model
expression, equation (5).

order to realize chains with spin S > 1/2, an n-chain spin-
1/2 ladder with an infinitely strong ferromagnetic inter-
chain coupling is mapped to a S = n/2 chain [24]. The
same algorithm employed to study spin ladders is used
with minor modifications [25]. The lengths and Trotter
numbers of the chains are chosen so as to minimize any
finite-size and lattice-spacing effects. The chain length is
kept at least 10 times larger than the calculated correla-
tion length. Spin states are updated about 104 times to
reach equilibrium and then measured 105 times. We are
able to simulate as many as 100 million lattice points on
our workstation.

3 Uniform susceptibility

The uniform susceptibility is shown in Figure 1 as a func-
tion of T/[JS(S+1)]. The dashed line is a plot of Fisher’s
result for the classical spin chain, equation (3). At high
temperatures, T/[JS(S + 1)] > 1, the agreement among
the results for all the spin values and equation (3) is very
good. As predicted by Haldane [17], at low temperatures
the uniform susceptibilities of integer spin chains behave
markedly differently from those of half-odd-integer spin
chains. An exponential activation due to an energy gap is
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observed for integer S. By fitting the uniform susceptibil-
ity to the low-temperature expression [26,27]

χu(S, T ) =
1

v

(
2∆

πT

)1/2

exp

(
−
∆

T

)
, (4)

where ∆ is the Haldane gap and v is the spin-wave veloc-
ity, we extract the values ∆S=1/J = 0.40(1), vS=1/Ja =
2.5(1), ∆S=2/J = 0.090(5), and vS=2/Ja = 4.50(33). The
uniform susceptibility data are fitted only for T < ∆/2,
and the results of this analysis agree with the values de-
duced in previous studies [18,28–30].

For the S = 1/2 chain, the theoretical low-temperature
result for the WZNW nonlinear σ model [31],

χu(1/2, T ) =
1

2πv

+
1

4πv

[
1

ln(T0/T )
−

ln(ln(T0/T ) + 1/2)

2 ln(T0/T )2

]
, (5)

is plotted as a solid line. Here the spin-wave velocity
vS=1/2/Ja = π/2, and T0/J ≈ 1.8. The hypothesis that
all half-odd-integer Heisenberg chains are in the same
universality class as the S = 1/2 chain, namely the
k = 1 WZNW model, is now generally accepted. How-
ever, this claim was initially considered to be controver-
sial, since integrable spin-S Hamiltonians are equivalent
to the WZNW model with k = 2S [32]. A recent numeri-
cal study by Hallberg et al. [33] gave strong evidence that
k = 1 for the WZNW model of the S = 3/2 chain, thus
supporting the above hypothesis. We give here additional
evidence in favor of this claim. The asymptotic value of
the uniform susceptibility for the k = 2S WZNW model is
different from that of equation (5). Specifically, at T → 0,
χu(S, T ) → S/πvS rather than χu(S, 0) = 1/2πvS . If we
use the calculated value vS=3/2/Ja = 3.87 for the spin-
wave velocity [33], we obtain Jχu(3/2, 0) ≈ 0.12 for the
k = 2S model and Jχu(3/2, 0) ≈ 0.04 for the k = 1
model. Therefore, as is evident from Figure 1, our data
for S = 3/2 show clearly that the S = 3/2 Heisenberg
chain is equivalent to the WZNW model with k = 1. We
have, in fact, fitted our S = 3/2 chain data for χu with
equation (5). The spin-wave velocity is held fixed at the
value given above and only T0 is adjusted. As may be seen
in Figure 1 the fit is very good at low temperatures, as ex-
pected. For the S = 5/2 chain, we are not able to obtain
numerical data down to low enough temperatures to yield
a meaningful test of equation (5).

4 Correlation length, staggered susceptibility,
and static structure factor peak intensity

In order to deduce the spin-spin correlation length,
ξ(S, T ), the instantaneous spin-spin correlation function,
C(r), is computed and fitted to the asymptotic form

C(r) ∼
exp(−r/ξ)

rλ
· (6)

Fig. 2. The spin-spin correlation length deduced from fitting
the computed correlation function to the asymptotic form,
equation (6), is plotted as a function of temperature. Also
shown are the correlation lengths of TMMC from reference [2].
The classical spin system result, equation (2), is shown as a
dashed line. The solid line is equation (7) for the S = 1/2
chain.

Equation (6) is equivalent to 1D and 2D Ornstein-Zernike
(OZ) forms when λ = 0 and λ = 1/2, respectively. Only
data with r > 3ξ are included in the fit to ensure that
the asymptotic behavior is probed. For half-odd-integer
spin chains, the 1D OZ form is found to work very well
over the entire temperature range. The spin correlations
for integer spin chains, however, are found to go through
a crossover with decreasing temperature, from the 1D to
the 2D OZ form at T ≈ ∆/2. Specifically, the 2D OZ
form gives a better description of the computed spin cor-
relations at low temperatures. This behavior also was ob-
served previously for spin ladders of even width [25]. The
low-temperature correlation function for the S = 1 chain
is known to be proportional to the modified Bessel func-
tion K0(r/ξ) [29]; K0 is also used to fit our integer spin
chain data, and the results are consistent with those ex-
tracted using equation (6).

In Figure 2, the numerical correlation length is shown
together with ξ(T ) for TMMC obtained from neutron
scattering experiments [2]. The result for the classical spin
system, equation (2), is shown as the dashed line. The
agreement among the spin correlation lengths for the dif-
ferent quantum spin chains, and with the classical curve, is
very good for temperatures as low as T/[JS(S+1)] ≈ 0.2,
which corresponds to ξ/a ≈ 4. As the temperature is
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Fig. 3. The temperature dependence of the staggered sus-
ceptibility per spin. The solid lines are the results of fits to
equation (8).

lowered further, the data begin to deviate from the clas-
sical curve. Note, that for S ≥ 1, as the spin value is
increased, the agreement between the quantum and clas-
sical results persists down to progressively lower temper-
atures. Because of the presence of a gap for integer spin
chains, ξ(T ) remains finite as T → 0. We estimate that
ξ(1, 0)/a = 6.0(1) and ξ(2, 0)/a = 50(1). These results
satisfy the relation v = ∆ξ with the values for v and ∆
obtained above; ∆S=1/J = 0.40(1), vS=1/Ja = 2.5(1),
∆S=2/J = 0.090(5), and vS=2/Ja = 4.50(33), and also
agree with those of previous numerical studies within the
combined errors [30,34]. For the S = 1/2 chain, we also
plot in Figure 2 the WZNW model prediction,

1

ξ(1/2, T )
= T

[
2−

1

ln(T0/T )
+

ln(ln(T0/T ) + 1/2)

2 ln(T0/T )2

]
,

(7)
with the parameters obtained by Nomura and Yamada in
a thermal Bethe ansatz study [35].

The staggered susceptibility per spin is shown in Fig-
ure 3. The different behaviors of integer and half-odd-
integer spin chains are clearly manifest in this plot. In
Figure 4, the static structure factor Cq at q = π is plotted
as a function of temperature. Note, that for integer spin
chains Cπ(S, T ) peaks at T ≈ ∆/2; closely similar be-
havior is observed for spin-1/2 ladders of even width [25].
The extrapolated zero-temperature values for the S = 1
chain, χs(1, 0) = 18.6(1) and Cπ(1, 0) = 3.83(2) agree well
with the corresponding results of the exact diagonaliza-
tion study by Sakai and Takahashi [36]. We also obtained

Fig. 4. Static structure factor peak intensity Cπ(S, T ) is plot-

ted to show the linear dependence of C
2/3
π on log T . The solid

lines are fits to equation (9). The arrows indicate the peak
positions as discussed in the text.

χs(2, 0) = 1160(10), and Cπ(2, 0) = 52.0(3) for the S = 2
chain.

Recently, Starykh, Sandvik, and Singh [37] studied the
static structure factor and the staggered susceptibility of
the S = 1/2 chain and obtained low-temperature analytic
forms for these quantities:

χs(S, T ) = Dχ(S)T−1
[

ln(Tχ(S)/T )
]1/2

, (8)

Cπ(S, T ) = Ds(S)
[

ln(Ts(S)/T )
]3/2

. (9)

We are able to fit our S = 1/2 data to these forms and
thereby to extract Dχ(1/2) = 0.30(1), Tχ(1/2) = 9.8(1.2),
Ds(1/2) = 0.091(1), and Ts(1/2) = 21(1). The solid lines
in Figures 3 and 4 are the results of fits to equations (8, 9)
for T/J < 0.25. The parameters thus obtained agree with
those of reference [37] to within 5%, except for Tχ(1/2).
This is due to the difference in fitting range, since only
very low temperature data show asymptotic behavior for
χs(S, T ). Our fitting range is 0.009 ≤ T/J < 0.25, while
0.035 ≤ T/J < 0.25 was used in reference [37]. Our S =
3/2 data can also be fitted to equations (8, 9) for T/J ≤
0.1. The parameters so-obtained are Dχ(3/2) = 7.8(3),
Tχ(3/2) = 3.2(1.1), Ds(3/2) = 0.63(2), and Ts(3/2) =
9.5(1.2).

As shown in Figure 2, the correlation length in the
spin-5/2 system TMMC is described well by the exact
classical result. From equation (7) one sees that quan-
tum effects only modify the classical behavior ξ ∼ 1/T
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Fig. 5. Inverse static structure factor peak intensity
Cπ(S, T )−1, multiplied by S for graphical purposes, versus
T/J . Note the deviation of the quantum Monte-Carlo results
for S = 5/2 from the data for TMMC around T/J ∼ 1.

by a logarithmic correction factor. On the other hand, for
S = 1/2 the structure factor in equation (9) changes from
the classical form Cπ(S, T ) ∼ 1/T to the quantum form
Cπ(S, T ) ∼ [ln(Ts(S)/T )]3/2; this is a qualitative and not
just a quantitative change due to quantum fluctuations
in the divergence of Cπ(S, T ) with decreasing tempera-
ture. Assuming this also holds for S = 3/2 and S = 5/2,
we plot Cπ(S, T )−1 versus T in Figure 5. It is evident
that for S = 5/2 there is a crossover from classical to
quantum behavior around T/J ∼ 1. Interestingly, the ex-
perimental data for TMMC do not seem to exhibit such
a crossover. However, in TMMC there should also be a
spin-space crossover from Heisenberg to XY behavior at
the XY gap temperature, which is ∆XY /J ∼ 0.7. In the
XY regime, Cπ(S, T ) is enhanced. We speculate therefore
that in TMMC the quantum and XY effects fortuitously
cancel thus leading to the apparent classical 1/T behavior
observed down to very low temperatures. Future quantum
Monte-Carlo calculations for S = 5/2 including the XY
anisotropy should serve to test this conjecture.

5 Discussion

In a recent theoretical study of gapped spin chains at non-
zero temperature, Damle and Sachdev [27] developed a
semiclassical picture based on thermally excited particles
for T � ∆. In this temperature regime, they were able

Fig. 6. (a) Correlation length and (b) uniform susceptibility
as a function of temperature for integer spin chains. The solid
lines are the results equations (10, 11) without any adjustable
parameter. The dashed line in (a) is the relation v = ∆ξ, and
the dashed line in (b) is equation (4).

to obtain expressions for several dynamic properties of
the O(3) nonlinear σ model. They also developed a rather
different semiclassical approach for ∆ < T < J which is
based upon classical waves described by the continuum
O(3) σ model. Using this approach, Damle and Sachdev
derive one-loop expressions for the uniform susceptibility
and correlation length in the temperature range ∆ < T <
J :

χu(S, T ) =
1

3πvS

[
ln
( 32πT

eγ+2∆S

)
+ ln ln

( 8T

e∆S

)]
(10)

ξ(S, T ) =
vS

2πT

[
ln
( 32πT

eγ+1∆S

)
+ ln ln

( 8T

e∆S

)]
, (11)

where γ = 0.5772... is Euler’s constant.
In Figure 6, we show Tξ(S, T )/vS and vSχu(S, T ) as

functions of T/∆S without any adjustable parameters,
since ∆S and vS have been determined independently.
For the S = 1 chain we use values ∆S=1 = 0.41050(2),
ξ(1, 0)/a = 6.03(1), and vS=1/Ja = 2.49(1) taken from
the literature [29,30], since these zero-temperature results
have smaller error bars than our own values. The solid
lines are equations (10, 11), which agree well with the
S = 2 data for ∆S=2 < T < J . An even better agreement
might be obtained if the theory were extended beyond the
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Fig. 7. Uniform susceptibility per spin and staggered correla-
tion length of the quantum spin chains are compared with those
of quantum spin ladders, consisting of n isotropically coupled
antiferromagnetic S = 1/2 chains [25]: (a) correlation length of
spin chains; (b) correlation length of spin ladders; (c) uniform
susceptibility of spin chains; and (d) uniform susceptibility of
spin ladders. Solid lines in (a) and (b) are the WZNW model
prediction, equation (7).

one-loop approximation. It is evident, nonetheless, that a
window of temperature in which equations (10, 11) apply
indeed exists for the S = 2 chain, as speculated by Damle
and Sachdev [27].

In Figure 6b, we also show the scaling of the uniform
susceptibility at low temperatures (T � ∆) along with
the theoretical expression equation (4) as a dashed line
without any adjustable parameters. The dashed line in
Figure 6a shows that the relation v = ∆ξ holds up to
T ≈ ∆/2 in integer spin chains.

Spin-1/2 ladders are arrays of n coupled Heisenberg
chains with S = 1/2. In analogy to integer spin chains,
ladders with an even number n of chains exhibit exponen-
tially decaying correlations in their ground state due to
the presence of a spin gap, while those with odd n show
behavior similar to that of half-odd-integer spin chains.
Therefore, it is illuminating to plot the results such that
the behaviors of quantum spin chains can be qualitatively
compared with those of S = 1/2 quantum spin ladders. In
Figure 7, we display the staggered correlation length and
the uniform susceptibility per spin for both spin chains
and isotropically coupled spin ladders [25]. The same sym-
bol is used for the spin-S chain and the spin-1/2 ladder of

width n = 2S. One observes the markedly different behav-
iors of gapped systems shown in open symbols compared
with those of gapless systems shown as solid symbols.

In summary, antiferromagnetic Heisenberg spin chains
with spin values ranging from S = 1/2 to S = 5/2 have
been studied with the quantum Monte-Carlo method. The
temperature dependences of the uniform susceptibility,
the staggered susceptibility, the static structure factor
peak intensity, and the correlation length are obtained.
We find that at high temperatures these quantities agree
very well with the exact results for the classical spin chain,
and that quantum effects become progressively more im-
portant as the temperature is decreased. In addition, our
data for χu and ξ for the S = 2 chain in the intermediate
temperature range ∆S=2 < T < J are reasonably well
predicted by the theory of Damle and Sachdev.

We would like thank S. Sachdev and R.R.P. Singh for valu-
able discussions. This work was supported by the National
Science Foundation-Low Temperature Physics Programs un-
der award number DMR 97-04532 and by the International
Joint Research Program of NEDO (New Economic Develop-
ment Organization), Japan.
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